The website of Personal Care Global

Joint development of 3D model of dermal microtissue

During ageing, human skin undergoes profound alterations of its biomechanical properties, and more particularly a loss of elasticity that results in skin sagging.

Dermal elastic fibres represent the primary components that support tissue compliance and
resilience. But as time goes by, their organisation and functionality decline, which makes them a preferred target for cosmetic anti-ageing strategies.

The current 3D bioengineered skin substitutes, which are easily available on the market, are still defective models to study skin elasticity. Indeed, they contain exogenous and artificial matrices that bias the measurement of biomechanical properties in the reconstructed tissue. So, there is a need to develop advanced models to investigate the mechanical structure of a tissue such as human skin.

3D scaffold-free microtissues were developed by Gattefossé laboratories to mimic in vitro an elastic tissue, which is responsible for intrinsic elastic properties of the dermis. To accurately evaluate the elasticity of such skin microtissues, Gattefossé chose BioMeca’s expertise for developing innovative analytical assessment with state-of-the-art technologies.

3D scaffold-free spheroids take advantage of the ability of cells to secrete their own extracellular matrix to ultimately recreate their own microenvironment. This technology enabled Gattefossé to produce in vitro hundreds of 3D microtissues within a few days only using dermal fibroblasts aggregated in ultra-low affinity plates.

The elastic modulus (or Young modulus) was then measured using Atomic Force Microscopy (AFM) and the elastic fibers were visualised by Second Harmonic Generation (SHG) imaging microscopy. Gattefossé and BioMeca thus demonstrated that the 3D spheroid microtissue is a relevant and reliable model with a complex organisation, comprising a dense, mature elastic fibre network sufficiently extensive to mimic in vitro dermal elastic mechanics.

This advanced 3D model has been successfully used to measure the efficacy of EleVastin a novel active ingredient developed by Gattefossé, fighting against age-related loss of skin elasticity. 

See more about Gattefossé

Upcoming Events

NYSCC Suppliers' Day 2024

Javits Center, New York
1st - 2nd May 2024

9th Anti-Ageing Skin Care Conference

Royal College of Physicians, London
25th - 26th June 2024

in-cosmetics Korea 2024

Hall C, Coex, Seoul, South Korea
24th - 26th July 2024

in-cosmetics Latin America 2024

São Paulo, Brazil
25th - 26th September 2024

IFSCC 2024

Recanto das Cataratas Thermas Resort, Iguazu Falls, Brazil
14th - 17th October 2024

SEPAWA

Estrel Congress Center, Berlin
16th - 18th October 2024

Access the latest issue of Personal Care Magazine on your mobile device together with an archive of back issues.

Download the FREE Personal Care Magazine app from your device's App store

Upcoming Events

NYSCC Suppliers' Day 2024

Javits Center, New York
1st - 2nd May 2024

9th Anti-Ageing Skin Care Conference

Royal College of Physicians, London
25th - 26th June 2024

in-cosmetics Korea 2024

Hall C, Coex, Seoul, South Korea
24th - 26th July 2024

in-cosmetics Latin America 2024

São Paulo, Brazil
25th - 26th September 2024

IFSCC 2024

Recanto das Cataratas Thermas Resort, Iguazu Falls, Brazil
14th - 17th October 2024

SEPAWA

Estrel Congress Center, Berlin
16th - 18th October 2024

Access the latest issue of Personal Care Magazine on your mobile device together with an archive of back issues.

Download the FREE Personal Care Magazine app from your device's App store

Step Communications Ltd, Step House, North Farm Road, Tunbridge Wells, Kent TN2 3DR
Tel: 01892 779999
www.step-communications.com
© 2024 Step Communications Ltd. Registered in England. Registration Number 3893025